
Chapter 5

Special Functions and Gaussian
Quadrature

5.1 Special Functions and Recurrence Rela-

tions

Variables of Laplace equation ∇2Ψ(~r) = 0 in 3-dimension are separable, i.e.,

∇2Ψ(~r) =

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
X(x)Y (y)Z(z)

=

[
1

r

∂2

∂r2
r +

1

r2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)]
U(r)

r
P (θ)Φ(ϕ)

=

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂z2

]
R(ρ)Φ(ϕ)Z(z) = 0. (5.1)

The differential equation of each component in a rectangular coordinate sys-
tem becomes either

[
d2

dx2 + k2
]
X(x) = 0 with a real k,

X(x) = A cos(kx + α) = A sin(kx + β) = A′ cos(kx) + B′ sin(kx)

= Ceikx + C∗e−ikx, (5.2)

or
[

d2

dz2 − κ2
]
Z(z) = 0 with a real κ,

Z(z) = Aeκz + Be−κz. (5.3)
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For azimuthal angle ϕ dependent part,
[

d2

dϕ2 + m2
]
Φ(ϕ) = 0 with a real m,

Φ(ϕ) = Aeimϕ + Be−imϕ. (5.4)

If 0 ≤ ϕ ≤ 2π, m should be an integer for Φ(ϕ) to be a single valued function.

For radial part in a spherical polar coordinate system,
[

d2

dr2 − l(l+1)
r2

]
U(r) = 0,

U(r) = Arl+1 + Br−l. (5.5)

For polar angle θ dependent part,
[

1

sin θ

d

dθ
sin θ

d

dθ
+

(
l(l + 1)− m2

sin2 θ

)]
P (θ) = 0, (5.6)

which becomes a generalized Legendre equation with x = cos θ. For radial
part in a cylindrical polar coordinate system,

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

(
κ2 − ν2

ρ2

)]
R(ρ) = 0, (5.7)

which becomes a Bessel equation with x = κρ. The solutions form a complete
set of orthogonal functions for the corresponding variables and has some
recursion relations.

For a system with azimuthal symmetry, the differential equation for the
polar angle θ becomes Legendre equation with m = 0;

d

dx

[
(1− x2)

dPl(x)

dx

]
+ l(l + 1)Pl(x) = 0 (5.8)

with −1 ≤ x = cos θ ≤ 1. The solution Pl(x) is a Legendre polynomial of
order l:

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1), (5.9)

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3),

...
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with the orthogonality condition of
∫ 1

−1
Pl′(x)Pl(x)dx =

2

2l + 1
δl′l. (5.10)

Some recurrence relations of the Legendre polynomial are

(l + 1)Pl+1 − (2l + 1)xPl + lPl−1 = 0, (5.11)

dPl+1

dx
− dPl−1

dx
− (2l + 1)Pl = 0, (5.12)

dPl+1

dx
− x

dPl

dx
− (l + 1)Pl = 0, (5.13)

(x2 − 1)
dPl

dx
− lxPl + lPl−1 = 0. (5.14)

The solution of the generalized Legendre equation with m 6= 0 (−1 ≤ x ≤ 1),

d

dx

[
(1− x2)

dPm
l (x)

dx

]
+

[
l(l + 1)− m2

1− x2

]
Pm

l (x) = 0, (5.15)

is called an associated Legendre function Pm
l (x):

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x). (5.16)

Spherical harmonics is defined by

Ylm(θ, ϕ) =

√√√√(2l + 1)

4π

(l −m)!

(l + m)!
Pm

l (cos θ)eimϕ. (5.17)

The orthonormality condition is
∫ π

0
sin θdθ

∫ 2π

0
dϕY ∗

l′m′(θ, ϕ)Ylm(θ, ϕ) = δl′lδm′m. (5.18)

The completeness relation is

∞∑

l=0

l∑

m=−l

Y ∗
lm(θ′, ϕ′)Ylm(θ, ϕ) = δ(cos θ − cos θ′)δ(ϕ− ϕ′). (5.19)

The differential equation for the cylindrical radius ρ with 0 ≤ x = κρ is
the Bessel differential equation;

d2Rν(x)

dx2
+

1

x

dRν(x)

dx
+

(
1− ν2

x2

)
Rν(x) = 0. (5.20)
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The solutions of this equation are the Bessel function Jν(x) and Neumann
function (Bessel function of the second kind) Nν(x);

Jν(x) =
(

x

2

)ν ∞∑

j=0

(−1)j

j!Γ(j + ν + 1)

(
x

2

)2j

, (5.21)

Nν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
. (5.22)

Hankel functions, Bessel function of the third kind, are defined as

H(1)
ν (x) = Jν(x) + iNν(x),

H(2)
ν (x) = Jν(x)− iNν(x). (5.23)

These Bessel functions all satisfy the recursion formulae

Rν−1(x) + Rν+1(x) =
2ν

x
Rν(x), (5.24)

Rν−1(x)−Rν+1(x) = 2
dRν(x)

dx
. (5.25)

If κ2 = −k2 < 0 in Eq.(5.7), then the differential equation becomes

d2Rν(x)

dx2
+

1

x

dRν(x)

dx
−

(
1 +

ν2

x2

)
Rν(x) = 0 (5.26)

with x = kρ. The solutions of this equation are modified Bessel functions;

Iν(x) = i−νJν(ix),

Kν(x) =
π

2
iν+1H(1)

ν (ix). (5.27)

For Poisson equation∇2Ψ(~r) = −k2Ψ(~r) or for time independent Schrödinger
equation, the radial part of differential equation in a spherical coordinate
system becomes

d2R(r)

dr2
+

2

r

dR(r)

dr
+

[
k2 − l(l + 1)

r2

]
R(r) = 0, (5.28)

compared to Eq.(5.7) of a Laplace equation in a cylindrical coordinate sys-
tem. With x = kr, this becomes

d2Rν(x)

dx2
+

2

x

dRν(x)

dx
+

[
1− l(l + 1)

x2

]
Rν(x) = 0 (5.29)
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and the solutions are the spherical Bessel functions;

jl(x) =

√
π

2x
Jl+1/2(x), (5.30)

nl(x) =

√
π

2x
Nl+1/2(x). (5.31)

To evaluate the value of special function, we may use the corresponding
recursion relation starting from the values of the lowest order. Using the
recurrence formula of Eq.(5.11), we may evaluate the value of Pl(x) of order
l starting from the value of P0(x) and P1(x) for a given value of x. Similarly
the value of Bessel function of order ν can be found using the recurrence
relation Eq.(5.24) starting from R0(x) and R1(x). The recursion relation can
also be used to evaluate the differential of the special function.

5.2 Gaussian Quadrature; Integral using Spe-

cial Function

The form of N point numerical integrals in Sect.2.4 are

∫ 1

−1
f(x)dx ≈

N∑

n=1

wnf(xn). (5.32)

As an example, for Simpson’s rule of Eq.(2.20),

x1 = −1, x2 = 0, x3 = 1;
w1 = 1/3, w2 = 4/3, w3 = 1/3

(5.33)

with N = 3. For N point integral with equally spaced points, Eq.(5.32) is
exact for a polynomial f(x) of order (N − 1). Thus the weighting factor wn

can be found from the conditions of

∫ b

a
xpdx =

xp+1

p + 1

∣∣∣∣∣
b

a

=
N∑

n=1

wnxp
n ; p = 0, 1, · · · , (N − 1). (5.34)

Notice here that xn does not need to be equally spaced in general.
If we determine xn together with wn for N points by condition of Eq.(5.34)

with p = 0, 1, · · · , (2N − 1), then Eq.(5.32) is exact for (2N − 1)-th order
polynomial f(x). The xn can also be determined by using special function.
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As an example for integral range of [a, b] = [−1, 1], we may use Legendre
polynomial PN(x) of order N . Then any polynomial f(x) of order up to
(2N − 1) becomes

f(x) = Q(x)PN(x) + R(x) (5.35)

with the polynomial Q(x) and R(x) of order up to (N − 1). Then the exact
integral of f(x) is

∫ 1

−1
f(x)dx =

∫ 1

−1
[Q(x)PN(x) + R(x)] dx =

∫ 1

−1
R(x)dx (5.36)

due to the orthogonality of Legendre polynomial Eq.(5.10). If we choose N
points xn to be the N zero points of PN(x), i.e., PN(xn) = 0, then the N
point numerical integral of f(x), Eq.(5.32) with Eq.(5.35), is

∫ 1

−1
f(x)dx ≈

N∑

n=1

wn [Q(xn)PN(xn) + R(xn)] =
N∑

n=1

wnR(xn). (5.37)

Now we only need to determine the value of N weighting factors wn which
can be done by using Eq.(5.34) with p = 0, 1, · · · , (N − 1). Then

wn =
2

(1− x2
n)

[
dPN(xn)

dx

]−2

(5.38)

for N points xn which is the zero point of the Legendre polynomial PN . This
is the Gauss-Legendre quadrature. For N = 3,

x1 = −x3 =
√

3/5, x2 = 0 ;

w1 = w3 = 5/9, w2 = 8/9.
(5.39)

This 3 point Gauss-Legendre quadrature has the error of order O(h7) com-
pared to the error of order O(h5) of the 3 point Simpson’s rule. If the integral
range is [a, b] = [0,∞] then we cannot use Gauss-Legendre quadrature. For
such a case we may use other orthogonal special function, such as Laguerre
polynomial or Hermite polynomial, depending on the form of f(x) instead of
Legendre polynomial.


