Chapter 6

Matrix Analysis

Coupled linear equations of N variables
Ax = b

with an N x N matrix for coefficients A;;
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and N x 1 column vectors for variables x; and constants b;
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Second order differential equation
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in a discretized grid space x1,x9,---,xy with a grid spacing of h can be
expressed by a matrix equation with
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and k, = k(z,). Here the N x N matrix A is a tri-diagonal matrix.

6.1 Matrix Inversion
The solution of Eq.(6.1) is
x = Alp (6.6)

with the inverse matrix A~!. The determinant of the matrix A should be
non-zero for the inverse matrix A~! to exist. Inverse matrix can be found
using Gauss-Jordan method: Change matrix A and unit matrix | (1;; = §;5)
in the same way until matrix A changed to unit matrix I, i.e.,

The matrices T; are, for 5 X 5 matrix as an example,

100 0 O
01 0 0 0
T, = [0 0 a 0 0},
00 0 1 0
0 0 0 0 1
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000 10
01 0 0 0
T, = 0O 01 0 0],
1 0 0 0 0
0O 0 0 0 1
1 0 0 0 O
0O 1 0 0 O
T3 = O 01 0 0],
0O b 0 1 0
0O 0 0 0 1
A A Ay Ay
Agp Agy Axz Ay
A = Aszp Ay Asz Az
Ap A A Ay
A5y Asy Asz Asy
Multiplying T; to A from left
Apy Al Az Ay Ags
Aoy A Aas Aoy Aos
T{A aAz1 aAszy aAsz aAszs aAss |,
Ag Agp Ays Ay Ays
Asy Asy Ass Asy Ass
Ap Agp Ay Ay Ags
Agr Ay Ay Ay Ay
ToA Azr Aszy Asg Azs Ass |,
A A Ay Ay A
Asi Asy Asz Asy Ass
Ay A Az
Ay Ag Ags
T3A Az Asp Ass
Agr +bAy Ay +bAy Ayz+bAss
Asy Asy Ass
Multiplying T; to A from right
A A adiz Ay
Ay Ay alyy Ay
AT, = Azp Az aAsz Ay
Ay A aAyz Ay
As1 Asy aAsz Asy

Ay
Aoy
Azy
Ayy + bAy
Asy

Ais
Ass
Ass |
Ags
A55
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AT2 = A34 A32 A33 A31 A35 ) (610)

Ay A +bA Az A A
Agy Agg +bAgs  Agg Agy Ags
AT; = Ay Asgp+bAsy Aszg Azy Ass
Ay Ap +b0Ay Ay Ay Ay
A5t Asy+0Ass Ass Ass Ass

To find the inverse matrix of A, change A and | in the same way by
exchanging two rows, multiplying a constant to one row, or multiplying a
constant to one row and add the result to some other row until A changed
to a unit matrix I. During this process, keep diagonal element (called pivot
element) non-zero by exchanging two rows or columns if necessary.

6.2 Eigenvalue Problem

For some special vector x = ¢,, in Eq.(6.1), the vector b = A¢,, becomes the
vector ¢, times a constant \,. Thus, the eigenvalue equation for N x N
matrix A is

with eigenvalue )\, and eigenvector ¢,,. Eigenvector ¢, can have an arbitrary
norm and we usually normalize the norm to be 1. The determinant of (A—Al)
should be zero at A = A, i.e.,

PiA) = JA=)|= ﬂ(An—A) — 0. (6.12)

For a tri-diagonal matrix A,

11 — A Alg 0 0 0
Agr Ay — A Ao 0 0
PA(A) = 0 Agg Ass— N Asy 0

0 Avn-1 Annv —A
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This determinant can be found recursively as

Pl()\) = AH — )\,
Py(A) = (Azx — AN)Pi(A) — A4,
Ps(N) = (Ass — A\)Pa(\) — Axg Ao Pi(N), (6.13)

Pu(N) = (A= NPosi(N) = Apn1Ap_1n Pasa(N).

We may need only few eigenvalues for a large N. Then use P,(\) = 0 with
n large enough but much smaller than N.

For a symmetric or Hermitian matrix, eigenvalues are real and eigenvectors
are orthogonal.

6.3 Inverse Vector Iteration

Inverse vector iteration is one of simple methods of finding eigenvector ¢, of
a matrix A for a given eigenvalue \,. For the eigenvector ¢, of a matrix A,

[A - (/\n + E)l] gbn = _€¢n
with an arbitrary constant e. However if ¢ is not the eigenvector ¢,, then
A=(ntell¢ = cff #—co

in general. Using these facts, the eigenvector ¢, for a given eigenvalue \,, of
matrix A can be found iteratively as

oD = CIA—(A+ol " ol (6.14)

together with normalization condition. Without the relaxation parameter e,
inverse of [A — A,l] does not exists for eigenvector ¢,,.

6.4 Damped Gradient Iteration

For a matrix H =T + V with eigenvalue w,

V= P —dKl+T]'(H—-w)
= Y —¢€[l + T/Ko] ' (H — w)y. (6.15)
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If 1 is the eigenvector of H with eigenvalue w, then ¢’ = 1. The damping
constant Ky is used to stabilize the components with small kinetic energy
T = CV? and ¢ is a relaxation parameter. The value of Ky must be roughly
the depth of the potential V.

6.5 Lanczos Algorithm

For an arbitrary vector x, x, = A"x becomes eigenvector of A with largest
eigenvalue for a large n. With a proper unitary matrix U, A = Udiag()\;)UT
and A" = Udiag(A\")U".

To find some lowest eigenvalues for a large symmetric matrix, approximate
a large matrix A by a tridiagonal matrix in a smaller basis space. Choose
basis vectors as,

¢17
Yo = Co(Ahr — Anih),
Yy = C3(Athy — Agathy — Agi91), (6.16)

wn—i-l = Cn—H (A¢n - Annwn - Ann—lwn—l)

with normalization constants of

Cy = [(A)'(Aghy) — (An)’] V2,
Cs = [(Ah)"(Athy) — (An)® — (A21)?] 7", (6.17)

Crs1 = [(AYn) (AY,) — (App)? = (Apn_1)?] 12

where A, = ! A, and ¢;_1, 1y, and 1,41 are orthogonal. The first vector
1y should not be an eigenvector of the matrix A. Then approximate the
large matrix A with smaller tridiagonal matrix with elements A,,,,, = ¢! Atbp,.
Using this small tridiagonal matrix, find even smaller number of eigenvectors
and eigenvalues for lowest eigenvalues.

Gram-Schmidt orthogonalization of vectors. For vectors ¢1, ¢, - - -, ¢n,

v = Cign,
Yy = Co(pa — 19ida),
Vs = Ci(ps — Vatbhds — P1hids), (6.18)
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n—1
wn = Cn (Cbn - Z ¢z¢f¢n> )
=1

N—1
by = C (¢N S wi@/};@v) |
=1

The new vectors 1), are orthonormal with proper normalization constant C,,.



