
Chapter 7

Discretized Grid Space in
Higher Dimension

Poisson equation ∇2Φ(~r) = −S(~r) or time independent Schrödinger equation
[
− h̄2

2m
∇2 + V (~r)

]
ψ(~r) = Eψ(~r)

in 2-dimensional space is an Elliptic differential equation
[

∂2

∂x2
+

∂2

∂y2

]
Φ(x, y) = −k2(x, y)Φ(x, y)− S(x, y). (7.1)

Wave equation

∂2

∂t2
Ψ(~r, t) = v2∇2Ψ(~r, t)

in 1-dimensional spatial space is a Parabolic differential equation
[

∂2

∂x2
− ∂2

∂y2

]
Φ(x, y) = −k2(x, y)Φ(x, y)− S(x, y). (7.2)

Both the elliptic and parabolic differential equations have second order dif-
ferential in all variables x and y and the same numerical method can be used.
Time dependent Schrödinger equation or diffusion equation,

ih̄
∂

∂t
ψ(~r, t) =

[
− h̄2

2m
∇2 + V (~r)

]
ψ(~r, t),

∂

∂t
Φ(~r, t) = ~∇ ·

[
D(~r)~∇Φ(~r, t)

]
+ S(~r, t),
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in 1-dimensional spatial space is a Hyperbolic differential equation

∂

∂t
φ(x, t) = D(x, t)

∂2

∂x2
φ(x, t)−K(x, t)φ(x, t) + S(x, t). (7.3)

The hyperbolic differential equation has first order differential for one variable
and second order differential for other variables. Numerical methods for 3-
dimension are simple extension of numerical methods in 2-dimensional space.

7.1 Discretization and Variational Principle

There are some ambiguity in discretizing spatial space. This can be clarified
with variational principle. The equation ~∇ · [D~∇φ] = −S can be derived
from the corresponding functional

E =
∫

d3r
[
1

2
D(~∇φ)2 − Sφ

]
(7.4)

by using variational method with respect to the function φ. To find φ(~r)
which minimizes the value of the functional E, vary E with respect to the
function φ by using φ + δφ. The first order in δφ(~r) is

∫

V
d3r

[
1

2
D(~r)∇φ(~r) · ~∇δφ(~r)− S(~r)δφ(~r)

]

=
∫

V
d3r

[
−~∇ ·D(~r)∇φ(~r)− S(~r)

]
δφ(~r) = 0 (7.5)

for arbitrary variation δφ(~r) with δφ = 0 at the boundary surface due to
the boundary condition of the differential equation. Thus we finally get the
differential equation ~∇ ·

[
D~∇φ(~r)

]
= −S(~r). Actually this equation is the

condition for the extremum of E.
In 2-dimensional space,

∂

∂x

(
D

∂φ

∂x

)
+

∂

∂y

(
D

∂φ

∂y

)
= − S(x, y), (7.6)

1

2

∫
dx

∫
dy

∂φ

∂x
D

∂φ

∂x
+

1

2

∫
dx

∫
dy

∂φ

∂y
D

∂φ

∂y
−

∫
dx

∫
dyS(x, y)φ(x, y) = 0. (7.7)

In Eq.(7.6), every terms should be evaluated at a same point while in Eq.(7.7)
each term can be integrated separately independent to the other terms. Thus
convert Eq.(7.4) into discretized space by evaluating each term separately
independent of other terms and then use variational method to obtain the
difference equation for φij in the grid space.
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7.2 Boundary Value Problem

Consider boundary condition for a difference equation in 2-dimensional grid
space such as discretized elliptic equation

φi+1j − 2φij + φi−1j

∆x2
+

φij+1 − 2φij + φij−1

∆y2
= −Sij

for the grid sizes of ∆x and ∆y. This is simplified as

4φij − φi+1j − φi−1j − φij+1 − φij−1 = h2Sij

for the case of ∆x = ∆y = h.
For Dirichlet boundary condition, the values of function at the boundary

are given; φ1j, φNj, φi1, and φiN . The boundary condition incorporates with
the difference equation as

4φiN−1 − φi+1N−1 − φi−1N−1 − φiN−2 = h2SiN−1 + φiN (7.8)

for φiN as an example. The values on the right hand side are known from
the value of the source and the Dirichlet boundary condition of the function.
The values on the left side should be determined by numerical method.

For Neumann boundary condition, the normal component of gradient at
the boundary are given; for example ∂φ/∂y = g(x) are given at the boundary
of y = yN which becomes

φiN − φiN−1 = hgi (7.9)

in the grid space. Then the difference equation becomes

3φiN−1 − φi+1N−1 − φi−1N−1φiN−2 = h2SiN−1 + hgi (7.10)

at the boundary (xi, yN). The values on the right hand side are known from
the value of the source and the Neumann boundary condition Eq.(7.9) of
the function. The values on the left side should be determined by numerical
method.

7.3 Iterative Gauss-Seidel Method

For an elliptic or parabolic difference equation, iterative Gauss-Seidel method
can be used. For ∇2φ = −S, the difference equation in 1-dimensional grid
space is

φi+1 − 2φi + φi−1 = −h2Si
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for φi which is the solution of the differential equation. The Gauss-Seidel
iteration Method for this case is

φ′i = (1− ω)φi +
ω

2
[φi+1 + φi−1 + h2Si]. (7.11)

Use old values φi to evaluate the value of φ′i and renew the value of φi with
the value of φ′i for every grid points i except for the boundary points. For
2-dimensional difference equation

4φij − φi+1j − φi−1j − φij+1 − φij−1 = h2Sij

the iterative Gauss-Seidel method is

φ′ij = (1− ω)φij +
ω

4
[φi+1j + φi−1jφij+1 + φij−1 + h2Sij]. (7.12)

Choose the relaxation parameter ω to be some value between 0 < ω < 1
for the faster convergence. To use iterative Gauss-Seidel method we should
assume some function for φ to start the iteration steps. Properly guessed
values of φ on the grid points as a starting value reduces iteration step number
very much.

7.4 Gaussian Elimination

Diffusion equation and time dependent Schrödinger equation are examples
of hyperbolic differential equation;

∂φ(~r, t)

∂t
= ~∇ ·

[
D(~r, t)~∇φ(~r, t)

]
−K(~r, t)φ(~r, t) + S(~r, t)

= −Hφ(~r, t) + S(~r, t). (7.13)

A hyperbolic differential equation has first order differential for one variable
t while second order differential for other variables ~r. The discretization of
H in grid space is the same as for the case of elliptic or parabolic differential
equation.

At a discretized time step tn = n∆t for one spatial dimension

φn+1
i − φn

i

∆t
= −(Hφ)i + Sn

i . (7.14)
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Evaluating φ in the right hand side of Eq.(7.14) on the spatial grid point xi

at time tn, explicit differencing scheme becomes

φn+1 = (1−H∆t)φn + Sn∆t. (7.15)

The right hand side is evaluated at time tn.
In implicit scheme, by evaluating φ in the right hand side of Eq.(7.14) at

time tn+1,

φn+1
i − φn

i

∆t
= −(Hφn+1)i + Sn

i ,

φn+1 =
1

1 + H∆t
[φn + Sn∆t], (7.16)

or by evaluating φ in the right hand side of Eq.(7.14) as the average of φn+1

and φn,

φn+1
i − φn

i

∆t
= −

(
H

[
φn+1 + φn

2

])

i

+ Sn
i ,

φn+1 =
1

1 + 1
2
H∆t

[(
1− 1

2
H∆t

)
φn + Sn∆t

]
. (7.17)

The right hand side are all known quantity at time tn. However matrix
inversion appears as φn+1 = A−1b

n
in implicit scheme.

Gaussian elimination method to find φ of Aφ = b for tri-diagonal matrix;

A−
i φn+1

i−1 + A0
i φ

n+1
i + A+

i φn+1
i+1 = bn

i , (7.18)

which is a three point recurrence relation for φn+1 with the known functions
Ai and bi. As an example,

bn
i = φn

i + Sn
i ∆t,

A0
i = 1 +

2

h2
∆t, (7.19)

A±
i = −∆t

h2

for Eq.(7.16) with H = − d2

dx2 and the grid size h. Using a forward two point
recurrence relation for φn+1,

φn+1
i+1 = αiφ

n+1
i + βi, (7.20)
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Eq.(7.18) becomes

A−
i φi−1 + A0

i φi + A+
i (αiφi + βi) = bi,

φi = γiA
−
i φi−1 + γi(A

+
i βi − bi),

which gives backward two point recurrence relations

αi−1 = γiA
−
i ,

βi−1 = γi(A
+
i βi − bi), (7.21)

γi = − 1

A0
i + A+

i αi

.

The boundary condition for α and β at xN−1 are

αN−1 = 0,

βN−1 = φN , (7.22)

which come from the boundary condition φN at xN

φN = αN−1φN−1 + βN−1.

The Gaussian elimination method is composed with a forward two point re-
cursion relation Eq.(7.20) starting with boundary condition φ1 and backward
two point recurrence relations Eq.(7.21) starting with boundary condition φN

through Eq.(7.22).
In 2-d H is not tridiagonal such as

(Hφ)ij = −(∇2φ)ij

= − 1

h2
(φi+1j − 2φij + φi−1j + φij+1 − 2φij + φij−1) . (7.23)

If we separate as

H = Hx + Hy (7.24)

for each coordinate, then

[1 + Hx∆t + Hy∆t]φn+1 ≈ [1 + Hx∆t][1 + Hy∆t]φn+1 = φn + Sn∆t (7.25)

for implicit scheme. Thus

φn+1 =
[

1

1 + Hx∆t

] [
1

1 + Hy∆t

]
[φn + Sn∆t],
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which is

φn+1/2 =
1

[1 + Hy∆t]
[φn + Sn∆t],

φn+1 =
1

[1 + Hx∆t]
φn+1/2. (7.26)

The matrix Hi in each of these equation is now tridiagonal.
Gaussian elimination method can also be used for an elliptical differential

equation with source term such as

(Hx + Hy)φ = S (7.27)

in 2-d. Using acceleration parameter ω

(Hx + Hy + ω)φ = S + ωφ,

which becomes

φn+1/2 =
1

(ω + Hx)
[S − (Hy − ω)φn],

φn+1 =
1

(ω + Hy)
[S − (Hx − ω)φn+1/2]. (7.28)

Iterate these equation starting with a guessed function φ1. The matrices
Hi for each component are tridiagonal and thus the Gaussian elimination
method can be used for matrix inversion.


