
Chapter 10

Data Analysis

10.1 Mean Value and Standard Deviation

Measured value in experiment is usually different from the real value of the
physical quantity. The accuracy of measured value depends on measuring
device, environment, human error, etc.

Error: difference between a measured value and the real value.
Relative error: ratio of the error to the real value.

Source of systematic error:

• Measuring device; scale, accuracy, ...

• Environment of measurement; temperature, pressure, humidity, ...

• Habit of person.

• Theoretical relation between variables of measurement.

The systematic error can be reduced by careful measurement using more
accurate measuring device in well controlled environment. Systematic error
can also be compensated after measurement.

Source of random error:

• Small variation of environment.
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• Thickness of scale tick mark.

• Small change of human factor.

The random error has no control.
Characteristics of random error in repeated many measurements:

1. The probability occurring negative error is same as the probability of
positive error with the same magnitude.

2. The probability of occurring small error is larger than the probability
of larger error.

3. The probability occurring a very large error (order of the smallest scale
of measuring device) is very small.

Thus if we repeat measurement infinitely many times, then the most probable
measured value would be closest to the real value.

According to the characteristics 1 and 2 of random error, for the real value
X, the sum of errors of the N measured values xi is zero if the number of
measurement N is infinitely large.

∞∑

i=1

(xi −X) = 0 =⇒ X = lim
N→∞

1

N

N∑

i=1

xi

For a large but finite N ,

∞∑

i=1

(xi −X) ≈
N∑

i=1

(xi − x0) = 0 =⇒ x0 =
1

N

N∑

i=1

xi (10.1)

Thus the arithmetic mean value x0 approaches to the real value X as the
number of measurements N becomes larger and larger. On the other hand,
according to the characteristics 2 and 3 of random error, as the measured val-
ues (data) xi distribute more sharply around the real value X, the standard
deviation σ of the data

σ2 =
1

N

N∑

i=1

(xi −X)2 (10.2)

is smaller. The standard deviation of data σ is independent of the number
of measurements N if N is not too small. This σ does not represent the
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reliability of the mean value x0 to be close to the actual value X. It just
represents how sharply the data is distributed.

For the reliability of the mean value x0, we define the standard deviation
of mean value σ0 as the magnitude of difference between the mean value of
data and the real value,

σ2
0 = |x0 −X|2 =

[
1

N

N∑

i=1

xi −X

]2

=
1

N2


∑

i

(xi −X)2 +
∑

i6=j

(xi −X)(xj −X)




=
1

N2

N∑

i=1

(xi −X)2 =
1

N
σ2. (10.3)

The second term in the second line vanished due to the characteristic 1 of
random error. Smaller value of the standard deviation of the mean value σ0

means higher reliability of the mean value x0 to be close to the actual value
X. Thus the reliability of the mean value x0 becomes better as the number
of measurements N becomes larger as 1/

√
N .

Since we do not know the real value X we cannot use Eq.(10.2). However
we know the mean value x0. Using Eqs.(10.1) – (10.3),

Nσ2 =
N∑

i=1

(xi −X)2 =
∑

i

(xi − x0 + x0 −X)2

=
∑

i

(xi − x0)
2 +

∑

i

(x0 −X)2 =
∑

i

(xi − x0)
2 + σ2. (10.4)

Thus the standard deviation σ of the data and the standard deviation σ0 of
the mean value x0 are

σ2 =
1

(N − 1)

N∑

i=1

(xi − x0)
2, (10.5)

σ0 = |x0 −X| = σ√
N

(10.6)

The standard deviation of data σ is independent of the number of measure-
ments N for not too small N . It depends only on the distribution form of
the measured data. But the standard deviation of the mean value σ0 is pro-
portional to 1/

√
N . Thus the reliability of the mean value is better for larger

number of measurements. Finally, the measured value for X is x0 ± σ0.
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10.2 Chi-Square Fitting and Error Analysis

For an experimental value which are measured directly, the arithmetic mean
value given by Eq.(10.1) is good for the mean value of data which replaces
the real value X. For a physical quantity which is not determined by direct
measurement but determined through a relation with some other directly
measured quantities, the simple arithmetic mean value cannot represents the
real value X. For a physical quantity which can be measured directly, the
arithmetic mean value of Eq.(10.1) can be looked as minimizing the standard
deviation σ2 of Eq.(10.2) with respect to the mean value x0, i.e.,

d

dx0

[
N∑

i=1

(xi − x0)
2

]
= 2

N∑

i=1

(xi − x0) = 0. (10.7)

This is the least chi square method for mean value of directly measured data.
Various physical quantities are connected through a relation according to

the physical law of the phenomena. For indirectly measurable variables a, b,
c, . . . and directly measurable variables x, y, z, . . ., a functional relation

f(x, y, z, · · · ; a, b, c, · · ·) = 0 (10.8)

represents the law of the underlying physical phenomena. As an example,
Ohm’s law is f(V, I; R) = V − RI = 0 for determining resistance R by
measuring voltage V and current I. For N sets of directly measured values
{xi, yi, zi, . . .}, the value of fi = f(xi, yi, zi, · · · ; a, b, c, · · ·) may not be zero
exactly due to the error of measurement. The systematic error of fi can
be controlled but the random error of fi has the same characteristics as the
random error of direct measurement. Thus the chi square is defined as the
weighted sum of squared error f 2

i

χ2 =
N∑

i=1

wif
2
i =

N∑

i=1

wi |f(xi, yi, zi, · · · ; a, b, c, · · ·)|2 (10.9)

where the weight wi represents the reliability of the data set {xi, yi, zi, . . .}.
The chi square per data is χ2/N . The least chi square fitting method (þj�è
]jY�LZO�) determines the values of a, b, c, . . . by minimizing the chi square.
Through the weight factor wi in the χ2, the evaluated values {a, b, c, · · ·} are
fitted to give smaller error of |fi| for the more reliably measured value set
with larger weight wi than the less reliable data set with smaller weight wi.
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If a systematic error σi varies for data set by set then the weight factor can
be set to wi = σ−2

i . Eq.(10.7) for direct measurements corresponds to the
case of least chi square fitting for a = X with wi = 1, i.e., with a non-varying
systematic error (σi = σ).

As an example, for the case of determining resistance R through Ohm’s
law, V = RI,

χ2 =
N∑

i=1

|f(Vi, Ii; R)|2 =
N∑

i=1

(Vi −RIi)
2, (10.10)

∂χ2

∂R
= 2

N∑

i=1

(Vi −RIi)Ii = 0 =⇒ R =
[
∑

i ViIi] /N

[
∑

i I
2
i ] /N

(10.11)

Here the resistance R is given as the ratio of the arithmetic mean of power
V I to the arithmetic mean of current square I2. On the other hand, if we
use the form of f(V, I; R) = R− V/I for the Ohm’s law, then we have

χ2 =
N∑

i=1

(
R− Vi

Ii

)2

=
N∑

i=1

1

I2
i

(Vi −RIi)
2 , (10.12)

∂χ2

∂R
= 2

N∑

i=1

(
R− Vi

Ii

)
= 0 =⇒ R =

1

N

N∑

i=1

[
Vi

Ii

]
(10.13)

Now the resistance R is the arithmetic mean V/I of resistance Ri = Vi/Ii for
each measurement. The Eq.(10.12) is different from the Eq.(10.10) by the
factor of I−2

i . In Eq.(10.10), every data set {Vi, Ii} are treated with the same
weight wi = 1 while each data set {Vi, Ii} are weighted with wi = I−2

i , i.e., the
smaller current has larger weight in Eq.(10.12). The Eq.(10.12) corresponds
to giving a same weight to the data Ri = Vi/Ii rather than to the data set
{Vi, Ii}. If one set of voltmeter and ammeter is used for whole data sets then
Eq.(10.10) would be more proper.

As another example, consider measurement of the resistivity ρ of metal
at various temperature T (assume here that both ρ and T are measured
directly). From these directly measured data sets, we extract two physical
quantities of temperature coefficient α of resistivity and the resistivity ρ0 at
temperature T0. The resistivity ρ and the temperature T are related by

f(ρ, T ; ρ0, α) = ρ0[1 + α(T − T0)]− ρ = 0. (10.14)
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The chi square fitting becomes, with β = ρ0α,

χ2 =
N∑

i=1

[ρ0 + β(Ti − T0)− ρi]
2 ,

∂χ2

∂ρ0

= 2
N∑

i=1

[(ρ0 − ρi) + β(Ti − T0)] = 0, (10.15)

∂χ2

∂β
= 2

N∑

i=1

[(ρ0 − ρi) + β(Ti − T0)] (Ti − T0) = 0.

From these coupled equations for ρ0 and β = αρ0,

ρ0 =
[
∑

i ρi/N ] [
∑

i(Ti − T0)
2/N ]− [

∑
i(Ti − T0)/N ] [

∑
i ρi(Ti − T0)/N ]

[
∑

i(Ti − T0)2/N ]− [
∑

i(Ti − T0)/N ]2

β =
[
∑

i ρi(Ti − T0)/N ]− [
∑

i ρi/N ] [
∑

i(Ti − T0)/N ]

[
∑

i(Ti − T0)2/N ]− [
∑

i(Ti − T0)/N ]2
(10.16)

α =
[
∑

i ρi(Ti − T0)/N ]− [
∑

i ρi/N ] [
∑

i(Ti − T0)/N ]

[
∑

i ρi/N ] [
∑

i(Ti − T0)2/N ]− [
∑

i(Ti − T0)/N ] [
∑

i ρi(Ti − T0)/N ]

Here β is used instead of α itself in minimizing χ2 since ρ0 and β form a set
of coupled linear equations.

Finally, consider the case of determining the time constant τ = RC of an
R-C circuit. The voltage across the capacitor during the charging process
with emf of E is V (t) = E(1− e−t/τ ) which can be represented either by

f(V, t; τ) = V − E(1− e−t/τ ) = 0 (10.17)

or by

f(V, t; τ) = t + τ ln
(
1− V

E

)
= 0. (10.18)

with the directly measured data sets of {Vi, ti}. Since the time t appears in
the exponent, for the case of Eq.(10.17), the chi square has a larger weight
for the data set measured at smaller time than the data set at larger time. In
contrast to this, the time t appears linear for the case of Eq.(10.18) and all
the measured data sets have the same weight. However more importantly,
the form of Eq.(10.18) is much easier in extracting the value of the time
constant τ using least χ2 fitting than the form of Eq.(10.17) since τ appears
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linearly in Eq.(10.18) while τ appears exponentially in Eq.(10.17). If we can
make f(x, y, z, · · · ; a, b, c, · · ·) linear in the variables a, b, c, · · · which should
be determined by chi square fitting, it is better using linear form of f than
using nonlinear form unless the reliability of data set requires otherwise.

For the reliability of mean values of the indirectly measured quantities
{a, b, c, · · ·}, we can define the standard deviation for each mean value a0,
b0, c0, · · · in the same way as the standard deviation Eq.(10.6) of a directly
measured quantity. That is, for the standard deviation of mean value of
quantity a,

σ2
a = |a0 − a|2 =

1

N

[
1

(N − 1)

N∑

i=1

(ai − a0)
2

]
(10.19)

Through the functional relation f , the deviations of data ai, bi, ci, · · · from
their corresponding mean values a0, b0, c0, · · · are related with the deviation
of directly measured data xi, xi, zi, · · · from their mean values x0, y0, z0, · · ·;

df =

(
∂f

∂a

)
da +

(
∂f

∂b

)
db +

(
∂f

∂c

)
dc + · · ·

+

(
∂f

∂x

)
dx +

(
∂f

∂y

)
dy +

(
∂f

∂z

)
dz + · · · (10.20)

The deviation dai = ai−a0 of ai from its mean value a0 is then, with dbi = 0,
dci = 0, · · ·

dai = −
(

∂f

∂a

)−1 [(
∂f

∂x

)
dxi +

(
∂f

∂y

)
dyi +

(
∂f

∂z

)
dzi + · · ·

]

where dxi = xi − x0, dyi = yi − y0m and dzi = zi − z0. Thus the standard
deviation of the mean value a0 is

σ2
a =

(
∂f

∂a

)−2



(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y +

(
∂f

∂z

)2

σ2
z + · · ·


 (10.21)

The standard deviation of mean values b0, c0, · · · are similarly given. Thus
once we find the standard deviation σx, σy, σz, · · · of mean values x0, y0,
z0, · · · for the directly measured quantities, then we can find the standard
deviation σa, σb, σc, · · · of mean values a0, b0, c0, · · · for the indirectly
measured quantities for their reliability.
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Some data has a form of linear superposition of special functions of some
variables as parameter;

y(x) = C1g1(x) + C2g2(x) + C3g3(x) + · · · (10.22)

where g1(x), g2(x), g3(x), · · · are known functions of parameter x. For this
case, the coefficients C1, C2, C3, · · · can be determined from the measured
data sets of {xi, yi} using the least chi square fitting with

f(x, y; C1, C2, C3, · · ·) = y(x)− [C1g1(x) + C2g2(x) + C3g3(x) + · · ·] .

The reliability of the mean value of the coefficients can be obtained in terms
of the standard deviation of directly measured x and y through Eq.(10.21).
Expanding angular distribution in terms of Legendre polynomial is an exam-
ple of this method. Fourier series expansion or wavelet analysis can also be
considered as expanding in terms of special functions using chi square fitting.

10.3 Fast Fourier Transform (FFT)

If the functions gl(x) in Eq.(10.22) are orthonormalized functions, i.e.,

∫ L

0
g∗l (x)gl′(x)dx = δll′ (10.23)

then the expansion coefficients Cl can be obtained by

Cl =
∫ L

0
g∗l (x)y(x)dx =

L

N

N∑

i=1

g∗l (xi)yi (10.24)

from the measured data sets {xi, yi}.
One such example is the Fourier series expansion of a periodic function

y(x) with period L:

y(x) =
1

2
A0 +

∞∑

n=1

[An cos(nk0x) + Bn sin(nk0x)] , (10.25)

An =
2

L

∫ x0+L/2

x0−L/2
y(x) cos(nk0x)dx, (10.26)

Bn =
2

L

∫ x0+L/2

x0−L/2
y(x) sin(nk0x)dx (10.27)
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where k0 = 2π/L. Since eix = cos x + i sin x, Fourier series expansion can
also be represented as

y(x) =
∞∑

n=−∞
Cne

ink0x, (10.28)

Cn =
1

L

∫ x0+L/2

x0−L/2
y(x)e−ink0xdx, (10.29)

An = Cn + C−n and Bn = i(Cn − C−n). (10.30)

For L →∞, Eq.(10.28) becomes Fourier integral,

y(x) =
1√
2π

∫ ∞

−∞
η(k)eikxdk, (10.31)

η(k) =
1√
2π

∫ ∞

−∞
y(x)e−ikxdx. (10.32)

This is called Fourier transformation.

Fast Fourier transform (FFT) is a computational algorithm to make fast
the Fourier transform in discretized xj = (j−1)∆ space (data sets of {xj, yj}).
As an example, using Eq.(10.29) for Fourier series of Eq.(10.28),

Cn =
1

N

N∑

j=1

yje
−ink0xj =

∆

L

N∑

j=1

yj

(
e−ik0∆

)(j−1)n
=

∆

L
w−nFn. (10.33)

In the second form w = e−ik0∆ is calculated once and only the simple mul-
tiplication of wjn is needed for each term of Fn =

∑
j yjw

jn. The number of
multiplications of w for wjn in each term is N2. For even N ,

Fn =
N/2∑

j=1

w(2j−1)ny2j−1 + wn
N/2∑

j=1

w2jny2j = F o
n + wnF e

n. (10.34)

Since only N/2 terms appear in each of F o
n and F e

n with multiplication of w2,
the number of multiplication of w2 for each of these is (N/2)2 and thus N2/2
in total. For N is a power of 2, this reduction can be done for log2N steps
and reduces the number of multiplication w can be reduced to be order of
N .
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10.4 Wavelet Analysis

Fourier series expansion is good only for a periodic function which repeats a
same form of function for infinitely many times. Thus we can expand in terms
of trigonometric functions which oscillate for infinite number of periods. For
the case of function with a form of many localized functions superposed, such
as heart beat signal or superposition of many Gaussian functions, we expand
using wavelet which corresponds to a wave function in a short range of the
parameter variable x. In a wavelet analysis for heart beat, the position and
amplitude of the wavelet representing the basic form of heart beat can be
extracted from the data. For the case of superposed Gaussians, the amplitude
Ai, the position xi, and the width σi of the Gaussian function

Gi(x) = Aie
−(x−xi)

2/(2σ2
i ) (10.35)

can be extracted in a wavelet analysis. The least chi square method can be
used in wavelet analysis.


