
Chapter 2

Basic Mathematical
Operations

2.1 Lagrange n-points Interpolation

For n-points, Lagrange interpolation (?/¶ú�ZO�) of function f(x) is

f(x) =
n∑

i=1

n∏

j 6=i

(
x− xj

xi − xj

)
fi (2.1)

where fi is the value of function f(xi) at grid point xi. For 2-points, as a
special case,

f(x) ≈ x− x1

x0 − x1
f0 +

x− x0

x1 − x0
f1 = f0 +

f1 − f0

x1 − x0
(x− x0). (2.2)

If we have equally spaced grid points xi = ih with step size h, the inter-
polation around x0 = 0 is

f(x) = f0 ± f±1 − f0

h
x (2.3)

for 2-points. For 3-points

f(x) ≈ f0 +
f1 − f−1

2h
x +

f1 − 2f0 + f−1

2h2
x2. (2.4)
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For 4-points

f(x) ≈ f0 ± 1
6h

(−2f∓1 − 3f0 + 6f±1 − f±2)x +
1

2h2
(f−1 − 2f0 + f1)x2

± 1
6h3

(−f∓1 + 3f0 − 3f±1 + f±2)x3. (2.5)

For 5 points

f(x) = f0 +
1

12h
(f−2 − 8f−1 + 8f1 − f2)x

+
1

24h2
(−f−2 + 16f−1 − 30f0 + 16f1 − f2)x2

+
1

12h3
(−f−2 + 2f−1 − 2f1 + f2)x3

+
1

24h4
(f−2 − 4f−1 + 6f0 − 4f1 + f2)x4. (2.6)

2.2 Numerical Differentiation

Taylor series expansion;

f(x) = f0 + xf ′ +
x2

2!
f ′′ +

x3

3!
f ′′′ +

x4

4!
f ′′′′ + · · · . (2.7)

At the discretized grid points,

f(0) = f0,

f(±h) = f±1 = f0 ± hf ′ +
h2

2!
f ′′ ± h3

3!
f ′′′ +

h4

4!
f ′′′′ + · · · , (2.8)

f(±2h) = f±2 = f0 ± 2hf ′ +
4h2

2!
f ′′ ± 8h3

3!
f ′′′ +

16h4

4!
f ′′′′ + · · · .

Using Eqs.(2.8) or by differentiating the interpolated function of Sect.2.1 we
can obtain the numerical differential form of a function.

First order numerical differential form of function f(x) at x = 0:
For 2-points (linear);

f ′ ≈ f1 − f0

h
+ O(h) =

f0 − f−1

h
+ O(h). (2.9)
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For 3-points, from Eq.(2.4) or Eqs.(2.8);

f1−f−1 = 2hf ′ +
h3

3
f ′′′ + O(h5),

f ′ =
f1 − f−1

2h
− h2

6
f ′′′ + O(h4) ≈ f1 − f−1

2h
+ O(h2). (2.10)

This 3-point differential looks like 2-point differential with step size 2h.
However 3-point differential form is symmetric around x = 0 where we
evaluate the differential while 2-point differential form is not. For 4-points;

f ′ = ± 1
6h

(−2f∓1 − 3f0 + 6f±1 − f±2) + O(h3). (2.11)

For 5-points;

f ′ ≈ 1
12h

[f−2 − 8f−1 + 8f1 − f2] + O(h4). (2.12)

2.3 Higher Order Differentiation

No 2-points 2nd order differential.
3-points 2nd order differential, from Eqs.(2.8),

f1−2f0 + f−1 = h2f ′′ + O(h4),

f ′′ =
f1 − 2f0 + f−1

h2
+ O(h2). (2.13)

4-points 2nd order differential

f ′′ =
1
h2

(f−1 − 2f0 + f1) + O(h3). (2.14)

5-points 2nd order differential

f ′′ =
1

12h2
(−f−2 + 16f−1 − 30f0 + 16f1 − f2) + O(h4). (2.15)

No 3-points 3rd order differential.
4-points 3rd order differential

f ′′′ ≈ ± 1
h3

(−f∓1 + 3f0 − 3f±1 + f±2). (2.16)
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5-points 3rd order differential

f ′′′ ≈ 1
2h3

(−f−2 + 2f−1 − 2f1 + f2). (2.17)

No 4-points 4th order differential.
5-points 4th order differential

f (iv) ≈ 1
h4

(f−2 − 4f−1 + 6f0 − 4f1 + f2). (2.18)

2.4 Numerical Integral

We can obtain numerical integration form of function f(x) using the inter-
polation given in Sect.2.1.

Trapezoidal rule : 2-points linear integral
Two trapezoidal integrals for 3-points,

∫ h

−h
f(x)dx =

h

2
(f−1 + 2f0 + f1) + O(h3). (2.19)

Simpson’s rule : 3-points integral (cf. 3-points Lagrange Interpolation)
∫ h

−h
f(x)dx =

h

3
(f−1 + 4f0 + f1) + O(h5). (2.20)

For a < x < b, by Simpson’s rule,

∫ b

a
f(x)dx =

h

3
[f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + 2f(a + 4h)

+ · · ·+ 2f(b− 2h) + 4f(b− h) + f(b)] (2.21)

by discretizing into even number of equal segments (grid size) h.
4-points integral : Simpson’s 3/8 rule

∫ 3h

0
f(x)dx =

3h

8
(f0 + 3f1 + 3f2 + f3) + O(h5). (2.22)

5-points integral : Bode’s rule

∫ 5h

0
f(x)dx =

2h

45
(7f0 + 32f1 + 12f2 + 32f3 + 7f4) + O(h7). (2.23)
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Note here that the 3-point integral and the 4-point integral have the same
order of error O(h5) due to the ± sign of the odd terms in Eq.(2.8). Thus we
usually use 3-point Simpson or 5-point Bode’s rule which have the midpoint
of integral range as one of the grid points.

If function f(x) has both fast varying region and slowly varying region
then we can use different grid size for different region. If we can change
fast varying function such as g(x)e−x or function with singular points such
as (1 − x2)−1/2 with singular point x = ±1 to a smoothly varying function
without singular point within the integration region by changing variable
then we can use equal grid size with the new variable after changing the
function as a function of the new variable.

2.5 Finding Roots; Finding Zero Points

Simple method using half step size. Choose two points xi and xi+1 = xi +h.
If

f(xi+1)f(xi) > 0, (2.24)

then move to next point. If |f(xi)| < |f(xi+1)| then change h to −h. If

f(xi+1)f(xi) < 0, (2.25)

then change h to h/2. If this condition is satisfied with |xi+1− xi| less than
allowed error then the zero point is xi.

Newton-Raphson method. Find the new point xi+1 using the differential
f ′(x) of function f(x).

f(xi+1) ≈ f(xi) + (xi+1 − xi)f ′(xi) = 0,

xi+1 = xi − f(xi)
f ′(xi)

. (2.26)

Secant method. Use f(xi−1) and f(xi) for f ′(xi) in Newton-Raphson
method.

f ′(xi) ≈ f(xi)− f(xi−1)
xi − xi−1

,

xi+1 = xi − f(xi)
xi − xi−1

f(xi)− f(xi−1)
. (2.27)


