Chapter 2

Basic Mathematical Operations

2.1 Lagrange n-points Interpolation

For n-points, Lagrange interpolation (내삽법) of function $f(x)$ is

$$
\begin{equation*}
f(x)=\sum_{i=1}^{n} \prod_{j \neq i}^{n}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right) f_{i} \tag{2.1}
\end{equation*}
$$

where f_{i} is the value of function $f\left(x_{i}\right)$ at grid point x_{i}. For 2-points, as a special case,

$$
\begin{equation*}
f(x) \approx \frac{x-x_{1}}{x_{0}-x_{1}} f_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} f_{1}=f_{0}+\frac{f_{1}-f_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right) \tag{2.2}
\end{equation*}
$$

If we have equally spaced grid points $x_{i}=i h$ with step size h, the interpolation around $x_{0}=0$ is

$$
\begin{equation*}
f(x)=f_{0} \pm \frac{f_{ \pm 1}-f_{0}}{h} x \tag{2.3}
\end{equation*}
$$

for 2-points. For 3-points

$$
\begin{equation*}
f(x) \approx f_{0}+\frac{f_{1}-f_{-1}}{2 h} x+\frac{f_{1}-2 f_{0}+f_{-1}}{2 h^{2}} x^{2} \tag{2.4}
\end{equation*}
$$

For 4-points

$$
\begin{align*}
f(x) & \approx f_{0} \pm \frac{1}{6 h}\left(-2 f_{\mp 1}-3 f_{0}+6 f_{ \pm 1}-f_{ \pm 2}\right) x+\frac{1}{2 h^{2}}\left(f_{-1}-2 f_{0}+f_{1}\right) x^{2} \\
& \pm \frac{1}{6 h^{3}}\left(-f_{\mp 1}+3 f_{0}-3 f_{ \pm 1}+f_{ \pm 2}\right) x^{3} . \tag{2.5}
\end{align*}
$$

For 5 points

$$
\begin{align*}
f(x)=f_{0} & +\frac{1}{12 h}\left(f_{-2}-8 f_{-1}+8 f_{1}-f_{2}\right) x \\
& +\frac{1}{24 h^{2}}\left(-f_{-2}+16 f_{-1}-30 f_{0}+16 f_{1}-f_{2}\right) x^{2} \\
& +\frac{1}{12 h^{3}}\left(-f_{-2}+2 f_{-1}-2 f_{1}+f_{2}\right) x^{3} \\
& +\frac{1}{24 h^{4}}\left(f_{-2}-4 f_{-1}+6 f_{0}-4 f_{1}+f_{2}\right) x^{4} . \tag{2.6}
\end{align*}
$$

2.2 Numerical Differentiation

Taylor series expansion;

$$
\begin{equation*}
f(x)=f_{0}+x f^{\prime}+\frac{x^{2}}{2!} f^{\prime \prime}+\frac{x^{3}}{3!} f^{\prime \prime \prime}+\frac{x^{4}}{4!} f^{\prime \prime \prime \prime}+\cdots \tag{2.7}
\end{equation*}
$$

At the discretized grid points,

$$
\begin{align*}
f(0) & =f_{0}, \\
f(\pm h) & =f_{ \pm 1}=f_{0} \pm h f^{\prime}+\frac{h^{2}}{2!} f^{\prime \prime} \pm \frac{h^{3}}{3!} f^{\prime \prime \prime}+\frac{h^{4}}{4!} f^{\prime \prime \prime \prime}+\cdots,(2.8) \tag{2.8}\\
f(\pm 2 h) & =f_{ \pm 2}=f_{0} \pm 2 h f^{\prime}+\frac{4 h^{2}}{2!} f^{\prime \prime} \pm \frac{8 h^{3}}{3!} f^{\prime \prime \prime}+\frac{16 h^{4}}{4!} f^{\prime \prime \prime \prime}+\cdots
\end{align*}
$$

Using Eqs.(2.8) or by differentiating the interpolated function of Sect.2.1 we can obtain the numerical differential form of a function.

First order numerical differential form of function $f(x)$ at $x=0$: For 2-points (linear);

$$
\begin{equation*}
f^{\prime} \approx \frac{f_{1}-f_{0}}{h}+O(h)=\frac{f_{0}-f_{-1}}{h}+O(h) . \tag{2.9}
\end{equation*}
$$

For 3-points, from Eq.(2.4) or Eqs.(2.8);

$$
\begin{align*}
& f_{1}-f_{-1}=2 h f^{\prime}+\frac{h^{3}}{3} f^{\prime \prime \prime}+O\left(h^{5}\right), \\
& f^{\prime}=\frac{f_{1}-f_{-1}}{2 h}-\frac{h^{2}}{6} f^{\prime \prime \prime}+O\left(h^{4}\right) \approx \frac{f_{1}-f_{-1}}{2 h}+O\left(h^{2}\right) . \tag{2.10}
\end{align*}
$$

This 3-point differential looks like 2-point differential with step size $2 h$. However 3-point differential form is symmetric around $x=0$ where we evaluate the differential while 2-point differential form is not. For 4-points;

$$
\begin{equation*}
f^{\prime}= \pm \frac{1}{6 h}\left(-2 f_{\mp 1}-3 f_{0}+6 f_{ \pm 1}-f_{ \pm 2}\right)+O\left(h^{3}\right) \tag{2.11}
\end{equation*}
$$

For 5-points;

$$
\begin{equation*}
f^{\prime} \approx \frac{1}{12 h}\left[f_{-2}-8 f_{-1}+8 f_{1}-f_{2}\right]+O\left(h^{4}\right) \tag{2.12}
\end{equation*}
$$

2.3 Higher Order Differentiation

No 2-points 2nd order differential.
3-points 2nd order differential, from Eqs.(2.8),

$$
\begin{align*}
& f_{1}-2 f_{0}+f_{-1}=h^{2} f^{\prime \prime}+O\left(h^{4}\right) \\
& f^{\prime \prime}=\frac{f_{1}-2 f_{0}+f_{-1}}{h^{2}}+O\left(h^{2}\right) \tag{2.13}
\end{align*}
$$

4-points 2 nd order differential

$$
\begin{equation*}
f^{\prime \prime}=\frac{1}{h^{2}}\left(f_{-1}-2 f_{0}+f_{1}\right)+O\left(h^{3}\right) \tag{2.14}
\end{equation*}
$$

5 -points 2 nd order differential

$$
\begin{equation*}
f^{\prime \prime}=\frac{1}{12 h^{2}}\left(-f_{-2}+16 f_{-1}-30 f_{0}+16 f_{1}-f_{2}\right)+O\left(h^{4}\right) \tag{2.15}
\end{equation*}
$$

No 3-points 3rd order differential.
4-points 3rd order differential

$$
\begin{equation*}
f^{\prime \prime \prime} \approx \pm \frac{1}{h^{3}}\left(-f_{\mp 1}+3 f_{0}-3 f_{ \pm 1}+f_{ \pm 2}\right) \tag{2.16}
\end{equation*}
$$

5 -points 3rd order differential

$$
\begin{equation*}
f^{\prime \prime \prime} \approx \frac{1}{2 h^{3}}\left(-f_{-2}+2 f_{-1}-2 f_{1}+f_{2}\right) \tag{2.17}
\end{equation*}
$$

No 4-points 4th order differential.
5 -points 4 th order differential

$$
\begin{equation*}
f^{(i v)} \approx \frac{1}{h^{4}}\left(f_{-2}-4 f_{-1}+6 f_{0}-4 f_{1}+f_{2}\right) \tag{2.18}
\end{equation*}
$$

2.4 Numerical Integral

We can obtain numerical integration form of function $f(x)$ using the interpolation given in Sect.2.1.

Trapezoidal rule : 2-points linear integral
Two trapezoidal integrals for 3 -points,

$$
\begin{equation*}
\int_{-h}^{h} f(x) d x=\frac{h}{2}\left(f_{-1}+2 f_{0}+f_{1}\right)+O\left(h^{3}\right) \tag{2.19}
\end{equation*}
$$

Simpson's rule : 3-points integral (cf. 3-points Lagrange Interpolation)

$$
\begin{equation*}
\int_{-h}^{h} f(x) d x=\frac{h}{3}\left(f_{-1}+4 f_{0}+f_{1}\right)+O\left(h^{5}\right) \tag{2.20}
\end{equation*}
$$

For $a<x<b$, by Simpson's rule,

$$
\begin{gather*}
\int_{a}^{b} f(x) d x=\frac{h}{3}[f(a)+4 f(a+h)+2 f(a+2 h)+4 f(a+3 h)+2 f(a+4 h) \\
+\cdots+2 f(b-2 h)+4 f(b-h)+f(b)] \tag{2.21}
\end{gather*}
$$

by discretizing into even number of equal segments (grid size) h.
4-points integral : Simpson's $3 / 8$ rule

$$
\begin{equation*}
\int_{0}^{3 h} f(x) d x=\frac{3 h}{8}\left(f_{0}+3 f_{1}+3 f_{2}+f_{3}\right)+O\left(h^{5}\right) \tag{2.22}
\end{equation*}
$$

5 -points integral : Bode's rule

$$
\begin{equation*}
\int_{0}^{5 h} f(x) d x=\frac{2 h}{45}\left(7 f_{0}+32 f_{1}+12 f_{2}+32 f_{3}+7 f_{4}\right)+O\left(h^{7}\right) \tag{2.23}
\end{equation*}
$$

Note here that the 3-point integral and the 4-point integral have the same order of error $O\left(h^{5}\right)$ due to the \pm sign of the odd terms in Eq.(2.8). Thus we usually use 3 -point Simpson or 5 -point Bode's rule which have the midpoint of integral range as one of the grid points.

If function $f(x)$ has both fast varying region and slowly varying region then we can use different grid size for different region. If we can change fast varying function such as $g(x) e^{-x}$ or function with singular points such as $\left(1-x^{2}\right)^{-1 / 2}$ with singular point $x= \pm 1$ to a smoothly varying function without singular point within the integration region by changing variable then we can use equal grid size with the new variable after changing the function as a function of the new variable.

2.5 Finding Roots; Finding Zero Points

Simple method using half step size. Choose two points x_{i} and $x_{i+1}=x_{i}+h$. If

$$
\begin{equation*}
f\left(x_{i+1}\right) f\left(x_{i}\right)>0, \tag{2.24}
\end{equation*}
$$

then move to next point. If $\left|f\left(x_{i}\right)\right|<\left|f\left(x_{i+1}\right)\right|$ then change h to $-h$. If

$$
\begin{equation*}
f\left(x_{i+1}\right) f\left(x_{i}\right)<0, \tag{2.25}
\end{equation*}
$$

then change h to $h / 2$. If this condition is satisfied with $\left|x_{i+1}-x_{i}\right|$ less than allowed error then the zero point is x_{i}.

Newton-Raphson method. Find the new point x_{i+1} using the differential $f^{\prime}(x)$ of function $f(x)$.

$$
\begin{align*}
f\left(x_{i+1}\right) & \approx f\left(x_{i}\right)+\left(x_{i+1}-x_{i}\right) f^{\prime}\left(x_{i}\right)=0, \\
x_{i+1} & =x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} . \tag{2.26}
\end{align*}
$$

Secant method. Use $f\left(x_{i-1}\right)$ and $f\left(x_{i}\right)$ for $f^{\prime}\left(x_{i}\right)$ in Newton-Raphson method.

$$
\begin{align*}
f^{\prime}\left(x_{i}\right) & \approx \frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}} \\
x_{i+1} & =x_{i}-f\left(x_{i}\right) \frac{x_{i}-x_{i-1}}{f\left(x_{i}\right)-f\left(x_{i-1}\right)} . \tag{2.27}
\end{align*}
$$

